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Abstract: This study investigates how machine learning (ML) and deep learning (DL) techniques can be used to predict student
dropouts, which is a major issue for higher education institutions. Using a dataset from Kaggle titled “Predict students’ dropout and
academic success,” we analyzed data from 4424 students across 17 undergraduate programs. We used 35 different attributes for each
student’s profile, which gave us a strong basis for our predictive modeling. To handle the class imbalance in the dataset, we used
three methods: oversampling, undersampling, and the Synthetic Minority Oversampling Technique (SMOTE). We tested several ML
and DL models, such as Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes, AdaBoost,
XGBoost, 1D Convolutional Neural Network (CNN), Multiple Layer Perceptron (MLP), and Deep Belief Network (DBN). We
evaluated these models based on accuracy, precision, recall, and F1 score. The Multiple Layer Perceptron (MLP) stood out,
achieving the highest scores for accuracy 98.6%, precision 98%, recall 98%, and F1-score 98% with the oversampled dataset. This
shows its great capability in managing complex data. The 1D Convolutional Neural Network (1D CNN) also performed well,
particularly in recall and F1-score, with scores of 91.5% and 88.5%, respectively, with the original dataset. It maintained a strong
recall of 91.4% and an F1-score of 87.7% with the undersampled dataset, and a recall of 89.2% and an F1-score of 88.1% with the
SMOTE dataset, proving its effectiveness in identifying dropouts under various conditions. These results underscore the effectiveness
of resampling techniques in enhancing model accuracy and the critical role of precise academic indicators in predicting student
outcomes. Our study’s contribution extends to informing educational strategies with practical evidence of the efficiency of ML and DL
models supported by innovative resampling methods. By recording the exceptional performance of both the MLP and 1D CNN
models, the research emphasizes the transformative potential of applying advanced analytical techniques to foster student retention
and academic success. The insights derived from this work could lead to actionable, data-informed interventions tailored to support
students at risk of dropout, thereby improving retention rates and shaping the future landscape of educational analytics.
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1. INTRODUCTION1

High dropout rates are a serious problem, leading to
millions of dollars in financial losses for schools due to lost
tuition and increased recruitment costs. Students who leave
their studies often find themselves with fewer career
opportunities and lower earnings over their lifetimes.
According to the National Center for Education Statistics,
the dropout rate is 40% for undergraduates in the United
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States, 30% in European countries, and varies across Asia
and Africa [1]. These numbers clearly show the need for
predictive models that can identify students who are at risk
of dropping out. With these models, schools can create
targeted interventions to help keep students on track and
support their success.

Our research applied machine learning (ML) and deep
learning (DL) algorithms to predict student dropout risks.
These modern techniques provide educational institutions
with valuable insights to improve their student retention
strategies. Compared to traditional methods, ML and DL are
better at handling the complex and diverse data found in
student records [2].
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While previous studies have identified factors that lead
to student attrition, there is still a gap in effectively using
ML and DL for datasets with class imbalances. Our study
addresses this by employing resampling techniques to
balance the data [3]. This approach enhances the accuracy of
our predictive models and ensures a reliable analysis of
dropout indicators [4]. This research seeks not only to
validate the effectiveness of ML and DL models in
predicting student dropouts but also to establish a precedent

for the application of resampling in educational data
analysis. Our findings have the potential to guide
interventions by educational institutions, reduce dropout
rates, and signal a shift toward a more data-informed
educational framework.

Table 1 summarizes the comparative analysis of model
performance, highlighting different features, datasets,
algorithms, and accuracy metrics from previous studies,
underscoring the need for our innovative approach [5].

Table 1. Comparative Analysis of Model Performance

Reference Feature Dataset Algorithms Accuracy

Min Max

Asif et al. (2017)
[6]

Academic
performance

210 DT, 1-NN, NB, NN, RF NN (62.50%) NB (83.65%)

Cruz-Jesus et al.
(2020) [7]

Academic
performance

1854 ANN, DT, ET, RF, SVM,
kNN,LR

LR (81.1%) SVM (51.2%)

Hoffait and
Schyns (2017)[8]

Predicting students’
performance

2244 RF, LR, ANN ANN (70.4%) RF (90%)

Ahmad (2018)
[9]

Identify students at
risk

300 MPNN 95%

Musso et al.,
(2020) [10]

Academic grade 655 ANN 60.5% 80.7%

Waheed et al.,
(2020) [11]

Academic grade, 32593 ANN, SVM, LR 84% 93%

Xu et al. (2019)
[12]

Predicting students’
performance

4000 DT, NN, SVM 71% 76%

Bernacki et al.
(2020) [13]

Predict achievement 337 LR, NB, J-48 DT, J-Rip
DT

J-48 (53.71%) LR (67.36%)

Burgos et al.
(2018) [14]

Drop out of a course 100 SVM, FFNN, PESFAM,
LOGIT_Act

SVM (62.50) LOGIT_
Act(90%)

2. METHODOLOGY

2.1 Dataset

The analysis is based on a large dataset gathered from
Kaggle called "Predicting students' dropout and academic
success." The dataset comprises information from 4424
students enrolled in 17 undergraduate programs. Each
student profile contains 35 features, including demographic
information (age, gender, nationality), socioeconomic status
(family income, parental education level, parental career),
academic achievement measures (grades, attendance rates,
courses, and curricular units), and target variables (dropout
and graduate). The dataset is imbalanced, with 1421 dropout

cases and 2209 graduate cases. The class imbalance is a
major challenge across research studies in educational data
mining, as it can significantly affect predictive modeling.
Models might become biased toward the majority class,
leading to poor sensitivity in detecting dropout cases, which
is critical for early intervention strategies.

A first examination found that the dataset is imbalanced,
with much fewer dropout cases than successful
continuations. This is a typical issue in educational datasets,
and it might bias predictive models toward the majority
class, resulting in an underestimation of dropout probability
[15]. To ensure the dataset's reliability and efficiency in
training predictive models, thorough cleaning methods were
applied. The procedures involved resolving missing values,
normalizing continuous attributes, and encoding categorical



Sam et al./Techno-Science Research Journal 13 (2) (2025) 1-16

11

variables. Each record was thoroughly analyzed for
completeness and consistency to ensure that the dataset was
reliable and appropriate for testing various predictive
algorithms. Additionally, we conducted exploratory data
analysis to identify trends and correlations in the dataset,
which is essential for developing precise predictive models
to improve student retention and success. The study also
addressed class imbalance by utilizing resampling
techniques such as oversampling, undersampling, and
SMOTE to balance the dataset and enhance model accuracy
[16]. Table 2 summarizes the dataset features, which
categorizes the attributes into demographic, socioeconomic,
macroeconomic, and academic data.

Table 2. Comparative Analysis of Model Performance

Attribute Class Attribute Type

Demographic Data

Martial Status Numeric/Discrete
Nationality Numeric/Discrete
Displaced Numeric/Binary
Gender Numeric/Binary
Age Numeric/Discrete
International Numeric/Binary

Socioeconomic Data

Mother’s Qualification Numeric/Discrete
Father’s Qualification Numeric/Discrete
Mother’s Occupation Numeric/Discrete
Father’s Occupation Numeric/Discrete
Education special
needs

Numeric/Binary

Debtor Numeric/Binary
Tuition fee up to date Numeric/Binary
Scholarship Holder Numeric/Binary
Umemployment rate Numeric/Continuous

Macroeconomic Data
Inflation Rate Numeric/Continuous
GDP Numeric/Continuous
Application Mode Numeric/Discrete

Academic data at
enrollment

Application Order Numeric/Ordinal
Course Numeric/Discrete
Attendance Numeric/Binary
Previous Qulification Numeric/Discrete

Academic Data at the
end 1st and 2nd of

semester

Curricular unit
(Credited) Numeric/Discrete

Curricular unit
(enrolled) Numeric/Discrete

Curricular unit
(evaluation) Numeric/Discrete

Curricular unit
(approved) Numeric/Discrete

Curricular unit (grade) Numeric/Continuous
Curricular unit (no
evaluation) Numeric/Discrete

Target Target Categorical

2.2. Resampled Methods

To address the dataset's detected class imbalance, we
used three resampling strategies: oversampling,
undersampling, and the Synthetic Minority Over-sampling
Technique (SMOTE). Each strategy was chosen based on its
capacity to improve class balance, hence improving
predictive model performance and generalizability.

Oversampling: Using this method, we expanded the
size of the minority class ("Dropped Out") by randomly
reproducing instances until the number of dropout cases
equaled the number of continuing students. This strategy
helps to prevent data loss, which is a danger linked with
undersampling [4]. Oversampling ensures that the model is
not biased towards the majority class and can learn from the
intricacies found in the minority class.

Undersampling: In contrast, undersampling includes
removing instances at random from the majority class
("graduate") in order to equal the number of dropout
instances. When the dataset is large enough to maintain
important information after reduction, this method is known
for its computational efficacy and efficiency [16].
Undersampling can speed up model training and reduce the
possibility of overfitting. However, it can also result in the
loss of important data.

Synthetic Minority Over-sampling Technique
(SMOTE): SMOTE generates new synthetic instances of
the minority class by interpolating between existing ones
[17]. This more nuanced representation of the minority class
aids models in learning a broader range of features
associated with dropouts, which can lead to improved
detection of at-risk students. SMOTE has the advantage of
creating more diverse synthetic samples, which can enhance
the model's ability to generalize to new, unseen data.

By resolving the class imbalance using these resampling
strategies, we saw considerable increases in the performance
of our prediction models. Models trained on resampled
datasets have higher accuracy, precision, recall, and F1
scores than those trained on the original imbalanced dataset.
This suggests that the models performed better in
recognizing both dropout and continuation cases, resulting in
more trustworthy and generalizable predictions.

Fig 2. Comparative Analysis of Model Performance
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The class distributions after applying the resampling
methods are illustrated in Fig. 1, which shows the number of
instances for each class under different resampling
techniques.

2.3 Model Selection

The selection of predictive models is an important phase
in the research process since it affects the performance and
interpretability of the results. In our research, we purposefully
selected a varied range of algorithms, including both
traditional machine-learning techniques and new deep-
learning methods. This decision is supported by the research,
which shows that depending on the characteristics of the
dataset and the specifics of the situation at hand, different
approaches may perform differently.

We included Logistic Regression (LR) to improve
interpretability and simplicity. For our experiments, LR was
configured with a maximum of 1000 iterations .

Decision Trees (DT) and their ensemble counterpart,
Random Forest (RF), have been incorporated to capture the
non-linear correlations and interactions among features, [18].
Decision Trees were used with a maximum depth of 10,
minimum samples split of 5, and minimum samples leaf of
2, while Random Forests utilized 100 estimators, a
maximum depth of 20, and minimum samples split of 2.

The K-Nearest Neighbors (KNN) technique, a non-
parametric method, is used to utilize the localization of data
points in the feature space [19]. KNN was configured with 9
neighbors for the original dataset and 3 neighbors for
oversampled and SMOTE datasets.

The effectiveness of Gaussian Naive Bayes (GNB), a
model based on the independence of features in our
potentially correlated dataset, is also investigated [20]. GNB
was used with a variance smoothing parameter of 1e-08 for
original, undersampled, and SMOTE datasets.

Boosting algorithms like AdaBoost and XGBoost are
chosen for their excellence in the sequential improvement of
weak learners' errors and their outstanding prediction
performance track record [20], [21]. AdaBoost was
configured with 50 estimators and a learning rate of 0.5 for
original and undersampled datasets, while for SMOTE, it
used 100 estimators. XGBoost was used with a learning rate
of 0.05 for original and undersampled datasets and 0.1 for
SMOTE, with a maximum depth of 6 for original and 8 for
oversampled, undersampled, and SMOTE datasets.

For deep learning, a 1D Convolutional Neural Network
(1D CNN) is expected to perform well with sequential or
time-series data because of its feature extraction capabilities
[22], [23]. The 1D CNN model included 2 convolutional
layers with 64 and 32 filters respectively, kernel size of 3,
pooling size of 2, and was trained with 100 epochs, batch
size of 128, ReLU activation functions, and Adam optimizer.

The Multiple Layer Perceptron (MLP), a fundamental
yet adaptable neural network model, was chosen for its
architecture's capacity to describe complex functions [9],
[13]. The MLP model included 2 hidden layers with 64 and
32 units respectively, ReLU activation function, 100 epochs,
and batch size of 32.

Finally, Deep Belief Networks (DBN), with their multi-
layered latent variables, have the potential to discover
complicated data patterns [24]. The DBN model included 3
hidden layers with 128, 256, and 512 units respectively,
learning rates of 0.01, 0.05, and 0.1, and a maximum of
10000 iterations. Collectively, the models range from the
simplicity of logistic regression to the complexities of deep
neural networks, allowing us to examine the balance of
interpretability, computing load, and predictive power. This
diverse method ensures a full comparative examination,
which serves the main purpose of analyzing the predictive
task from several analytical perspectives.

2.4. Evaluation Metrics

The efficacy of the predictive models was assessed
using a set of indicators that provide a comprehensive
perspective of performance. The metrics used to account for
a variety of features of prediction quality, including
accuracy, the balance of precision and recall, and the
harmonic mean of the two. These measures, Accuracy,
Precision, Recall, and F1-Score, were chosen because they
are widely accepted in classification tasks and are relevant to
the context of forecasting student dropouts, where class
imbalance is a major concern [25].

To evaluate the models, we employed a train-test split
method. The dataset was split into training and testing sets
with a ratio of 80% for training and 20% for testing,
resulting in 3540 training samples and 885 testing samples.
The data was split randomly, ensuring that the
representativeness of the class distribution was maintained in
both the training and testing sets. This method ensures that
both sets have a similar proportion of dropout and graduate
cases, which is crucial for evaluating model performance in
a realistic manner .

To address the class imbalance in the training set, we
utilized various resampling techniques, including Random
OverSampling, Random UnderSampling, and SMOTE [8],
[16]. These methods help in balancing the dataset and
enhancing model accuracy by preventing the predictive
models from being biased towards the majority class. By
applying these techniques, we aimed to improve the model's
ability to accurately predict dropout cases, which are critical
for early intervention strategies.

The test set was derived from the original dataset before
applying any class balancing techniques. This approach
ensures that the evaluation results reflect realistic
performance, as using a balanced test set might yield high
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accuracy but may not represent real-world conditions
accurately.

Accuracy represents the proportion of correctly
predicted instances out of the total instances [25]. The
formula is:

(Eq.1)

Recall, also known as the true positive rate, indicates
how well the model identifies positive instances [25]. The
formula is:

(Eq.2)

Precision measures the correctness of positive predictions
by the model [25]. The formula is:

(Eq.3)

The F1-Score is the harmonic mean of precision an
recall, providing a balance between the two [25]. The
formula is:

(Eq.4)

Table 3 illustrates the confusion matrix shows the
relationship between actual and predicted classifications,
including true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN) [25].

Table 3. Comparative Analysis of Model Performance

Actual
Positive Negative

Predicted
Positive True positive

(TP)
False positive

(FP)

Negative False negative
(FN)

True negative
(TN)

3. RESULTS AND DISCUSSION

The graphs in Figs. 2 through 5 illustrate the accuracy,
precision, recall, and F1-score of various machine learning
and deep learning models using a range of resampling
strategies. They underscore the crucial role of selecting the
right resampling technique and model based on the unique
performance metric of interest.

The analysis of various machine learning models using
different resampling methods reveals key insights into model
performance across metrics like accuracy, precision, recall,
and F1-score. The Multiple Layer Perceptron (MLP)
consistently performs the best, particularly with the
oversampled dataset, achieving the highest scores across all
metrics [25]. The 1D Convolutional Neural Network (CNN)
also demonstrates strong and stable performance across
different resampling methods, maintaining high recall and
F1-scores [26].

Table 5 shows that the Multiple Layer Perceptron
(MLP) performed consistently better than the other models
on all datasets, performing especially well on the
oversampled dataset. With an accuracy of 0.986, precision of
0.980, recall of 0.980, and F1-Score of 0.980, it obtained the
highest metrics. This suggests that MLP gains a great deal
from the oversampling method, as evidenced by the
noteworthy improvements in all assessed measures. On the
other hand, different datasets showed variations in the
effectiveness of alternative models. As can be seen in Tables
4, 6, and 7, some models improved when specific sampling
strategies were used, whereas other models did not
consistently demonstrate benefits.

Fig 2. Accuracy by Resampling

Fig 3. Precision by Resampling
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Fig 4. Recall by Resampling

Fig 5. Score by Resampling

Table 4. Dropout Results in ‘Original’ Dataset:

Model Name Accuracy Precision Recall F1-Score

Decision Tree 0.792 0.793 0.792 0.792

Random Forest 0.870 0.872 0.870 0.867

Logistic Regression 0.878 0.880 0.878 0.876

K-Nearest Neighbor 0.792 0.794 0.792 0.783

Gussian Naïve Bayes 0.809 0.808 0.809 0.809

AdaBoost 0.871 0.873 0.871 0.869

XGBoost 0.858 0.857 0.858 0.856

1D CNN 0.854 0.858 0.915 0.885

Multiple Layer Perceptron 0.898 0.920 0.800 0.860

Deep Belief Network 0.785 0.730 0.690 0.710

An important finding highlighted in the feature
importance chart (Fig. 6) is the significance of the ‘Tuition
fees up to date’ feature. As depicted in the accompanying
bar chart, this attribute holds the highest importance among
all features when predicting student dropouts. The
importance of the feature highlights how crucial financial
stability is in keeping students in school [27].

Additionally, the ‘Curricular units 2nd semester
(grade)’ feature is also notably significant, suggesting that
academic performance in the second semester is a key
indicator of a student’s likelihood to drop out. This can
provide educational institutions with actionable insights into
identifying students at risk based on their financial and
academic status.

Furthermore, being a ‘Scholarship holder’ and whether
a student is ‘International’ are also important factors,
indicating that both financial support and the challenges
faced by international students play crucial roles in
predicting dropout rates [28]. These insights can help
institutions focus their support efforts more effectively to
improve student retention.

Table 5. Dropout Results in ‘Oversampled’ dataset

Model Name Accuracy Precision Recall F1-Score

Decision Tree 0.801 0.800 0.801 0.801

Random Forest 0.866 0.866 0.866 0.864

Logistic Regression 0.867 0.867 0.867 0.866

K-Nearest Neighbor 0.756 0.755 0.756 0.755

Gussian Naïve Bayes 0.797 0.797 0.797 0.797

AdaBoost 0.859 0.858 0.859 0.858

XGBoost 0.869 0.869 0.869 0.867

1D CNN 0.857 0.847 0.887 0.867

Multiple Layer Perceptron 0.986 0.980 0.980 0.980

Deep Belief Network 0.655 0.550 0.540 0.540

Table 6. Dropout Results in ‘Undersampled’ dataset

Model Name Accuracy Precision Recall F1-Score

Decision Tree 0.787 0.792 0.787 0.789

Random Forest 0.860 0.840 0.840 0.840

Logistic Regression 0.859 0.858 0.859 0.858

K-Nearest Neighbor 0.770 0.767 0.770 0.768

Gussian Naïve Bayes 0.803 0.802 0.803 0.802

AdaBoost 0.855 0.854 0.855 0.854

XGBoost 0.847 0.846 0.847 0.846

1D CNN 0.873 0.843 0.914 0.877

Multiple Layer Perceptron 0.888 0.840 0.870 0.860

Deep Belief Network 0.822 0.790 0.730 0.760
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Table 7. Dropout Results in ‘SMOTE’ dataset:

Model Name Accuracy Precision Recall F1-Score

Decision Tree 0.814 0.816 0.814 0.815

Random Forest 0.862 0.862 0.862 0.860

Logistic Regression 0.862 0.861 0.862 0.860

K-Nearest Neighbor 0.753 0.754 0.753 0.753

Gussian Naïve Bayes 0.808 0.808 0.808 0.808

AdaBoost 0.852 0.851 0.852 0.851

XGBoost 0.855 0.854 0.855 0.854

1D CNN 0.874 0.871 0.892 0.881

Multiple Layer Perceptron 0.889 0.890 0.810 0.850

Deep Belief Network 0.769 0.680 0.740 0.710

Additionally, the role of socio-economic factors,
including access to educational resources, cannot be
overlooked. Students with limited access to textbooks and
online materials often face additional challenges, impacting
their ability to succeed academically [27]. This highlights
the need for institutions to ensure all students have equitable
access to necessary resources. Moreover, the impact of
extracurricular activities on student retention is significant.
Participation in sports, clubs, and other non-academic
pursuits fosters a sense of belonging and community, which
is essential for student motivation and persistence.
Encouraging involvement in such activities can positively
influence students' academic journeys and retention rates.

Fig 6. Important Feature

4. CONCLUSIONS

The study makes significant strides in predictive
analytics in higher education, employing machine learning
(ML) and deep learning (DL) approaches to assess student
dropout rates. The research confirms that resampling
strategies such as oversampling, undersampling, and
SMOTE efficiently correct class imbalances, thereby
increasing predictive model accuracy. The Multiple Layer
Perceptron (MLP), a deep learning model, consistently
performs well, particularly on the oversampled dataset.
However, the 1D Convolutional Neural Network (CNN)
consistently outperforms the MLP in terms of recall and F1-
Score, except for the oversampled dataset. This highlights
the efficacy of 1D CNN in managing imbalanced datasets,
notably in terms of recall and F1-Score.

The novelty of this research lies in its comprehensive
integration of both machine learning (ML) and deep learning
(DL) techniques to predict student dropouts, coupled with
the innovative application of class balancing methods,
including oversampling, undersampling, and the Synthetic
Minority Oversampling Technique (SMOTE). This dual
approach not only enables a detailed comparison of various
predictive models but also significantly enhances predictive
accuracy and reliability. By addressing the common issue of
class imbalance, the study sets a new benchmark in
educational data analysis. The methodological framework
established in this research—encompassing extensive data
cleaning, feature engineering, and advanced resampling
techniques—provides a robust template for future studies.

The findings have practical implications for educational
institutions, administrators, educators, and support staff, all
of whom play important roles in reducing dropout rates. By
implementing predictive models, institutions can identify at-
risk students and execute targeted early intervention
programs such as academic guidance, tutoring, financial aid,
and flexible payment options. The integration of predictive
models into student information systems enables real-time
monitoring and interventions, a task that requires the
collective effort of all involved.

Future studies might explore the use of predictive
models in a range of educational settings and include
additional data pieces, such as student engagement
indicators from learning management systems, to increase
forecast accuracy. Continuous research can track the long-
term effects of predictive interventions on student retention
and achievement levels. Furthermore, the research delivers
actionable insights for educational institutions to develop
targeted interventions, ultimately improving student
retention. This scalable model offers a practical tool for real-
time monitoring and support, with broad applicability across
diverse educational settings.
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